Progress toward understanding brain mechanisms in psychosis is hampered by failures to account for within-group heterogeneity that exists across neuropsychological domains. We recently identified distinct cognitive subgroups that might assist in identifying more biologically meaningful subtypes of psychosis. In the present study, we examined whether underlying structural brain abnormalities differentiate these cognitively derived subgroups.


1.5T T1 weighted structural scans were acquired for 168 healthy controls and 220 patients with schizophrenia/schizoaffective disorder. Based on previous work, 47 patients were categorized as being cognitively compromised (impaired premorbid and current IQ), 100 as cognitively deteriorated (normal premorbid IQ, impaired current IQ), and 73 as putatively cognitively preserved (premorbid and current IQ within 1 SD of controls). Global, subcortical and cortical volume, thickness, and surface area measures were compared among groups.


Whole cortex, subcortical, and regional volume and thickness reductions were evident in all subgroups compared to controls, with the largest effect sizes in the compromised group. This subgroup also showed abnormalities in regions not seen in the other patient groups, including smaller left superior and middle frontal areas, left anterior and inferior temporal areas and right lateral medial and inferior frontal, occipital lobe and superior temporal areas.


This pattern of more prominent brain structural abnormalities in the group with the most marked cognitive impairments—both currently and putatively prior to illness onset, is consistent with the concept of schizophrenia as a progressive neurodevelopmental disorder. In this group, neurodevelopmental and neurodegenerative factors may be important for cognitive function.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)