Impairments in early-stage visual processing are observed in chronic psychosis. However, their presence, localization within the brain, and contribution to cognitive symptoms remain less well established early in disease course. The present study utilized magnetoencephalography (MEG) to examine sensory responses within primary visual cortex (V1). MEG was recorded from 38 individuals diagnosed with a schizophrenia spectrum illness at first psychotic episode (FESz) and 38 matched healthy controls (HC) during visual search tasks. The inverse solution for cortical activity contributing to the M100 visual evoked field was derived. Task performance and V1 activation were compared between groups. FESz exhibited a reduced V1 response relative to HC. This group deficit, however, was selective for the left hemisphere (LH). A similar interaction was observed for response time with FESz exhibiting slower responses to right visual field targets, a difference not observed among HC. Among FESz, larger LH V1 activity was associated with larger hallucination subscale scores on the Scale for the Assessment of Positive Symptoms. Early-stage visual processing deficits localized to V1 are present at disease onset in the schizophrenia spectrum. This impairment appears to be restricted to the LH, consistent with previous reports detailing a predominantly LH disease process in early psychosis, and activity within this region was associated with an increased experience of hallucinations. These findings detail the cortical responses contributing to visual processing impairments and their relationship with symptoms at disease onset, advancing our understanding of their developmental trajectory over the course of psychotic illness.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (