A cocoon is a by-product of a propagating jet that results from shock heating at the jet head. Herein, considering simultaneous cocoon formation, we study the stability of relativistic jets propagating through the uniform ambient medium. Using a simple analytic argument, we demonstrate that independent from the jet launching condition, the effective inertia of the jet is larger than that of the cocoon when the fully relativistic jet oscillates radially owing to the pressure mismatch between jet and cocoon. In such situations, it is expected that the onset condition for the oscillation-induced Rayleigh–Taylor instability is satisfied at the jet interface, resulting in the destabilization of the relativistic jet during its propagation. We have quantitatively verified and confirmed our prior expectation by performing relativistic hydrodynamic simulations in three dimensions. The possible occurrences of the Richtmyer–Meshkov instability, oscillation-induced centrifugal instability, and Kelvin–Helmholtz instability are also discussed.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)