Reports by the US Department of Energy in 2014 evaluated membrane heat pump technology as one of the most promising alternatives to conventional vapour compression methods. Vapour compression methods maintain an evaporator temperature lower than the dew point to deal with the latent heat load. In membrane heat pump systems, only the water vapour is transferred and there is no phase change. The migration is caused by the difference in vapour pressure before and after the membrane. A vacuum pump or blower is used to create the pressure difference. However, there is no methodology for predicting dehumidification performance of membranes when used as part of a cooling system. In this study, using the assumption that there is a similarity between heat transfer and moisture pervaporation, the performance indices of the membrane are derived using a well-known heat exchanger method, the ε-NTU models. Performance estimations are calculated for two representative system layouts: bypass and vacuum. Simple relations between design parameters are suggested, giving design guidelines for researchers.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]