Abstract
Genetic and environmental influences are thought to interact in their contribution to the etiology of major neuropsychiatric disorders. One of the best replicated findings obtained in genome-wide association studies are genetic variants in the CACNA1C gene. Here, we used our constitutive heterozygous Cacna1c rat model in combination with a 4-week exposure to either post-weaning social isolation, standard housing or social and physical environmental enrichment during the critical juvenile developmental period to observe their long-term interactive effects with Cacna1c haploinsufficiency. Our study provides evidence for a gene × environment interaction, i.e. an interplay between Cacna1c haploinsufficiency and environment during juvenile development, on object recognition, spatial memory and reversal learning capabilities. Social and physical enrichment had a positive influence on Cacna1c+/− rats and Cacna1c+/+ littermate controls on spatial and reversal learning, while post-weaning social isolation negatively affected novel object recognition in both genotypes. Despite intact spatial learning and re-learning abilities in all groups, slight but consistent deficits were evident in Cacna1c+/− rats previously housed under standard conditions particularly during reversal learning but not Cacna1c+/− rats previously exposed to social and physical enrichment. Together, this supports the notion that Cacna1c interacts with the environment to shape disease vulnerability and associated alterations in cognitive functioning.