Abstract
Polyglutamine (polyQ) expansion in Ataxin-7 (ATXN7) results in spinocerebellar ataxia type 7 (SCA7) and causes visual impairment. SCA7 photoreceptors progressively lose their outer segments (OSs), a structure essential for their visual function. ATXN7 is a subunit of the transcriptional coactivator Spt-Ada-Gcn5 Acetyltransferase complex, implicated in the development of the visual system in flies. To determine the function of ATXN7 in the vertebrate eye, we have inactivated ATXN7 in zebrafish. While ATXN7 depletion in flies led to gross retinal degeneration, in zebrafish, it primarily results in ocular coloboma, a structural malformation responsible for pediatric visual impairment in humans. ATXN7 inactivation leads to elevated Hedgehog signaling in the forebrain, causing an alteration of proximo-distal patterning of the optic vesicle during early eye development and coloboma. At later developmental stages, malformations of photoreceptors due to incomplete formation of their OSs are observed and correlate with altered expression of crx, a key transcription factor involved in the formation of photoreceptor OS. Therefore, we propose that a primary toxic effect of polyQ expansion is the alteration of ATXN7 function in the daily renewal of OS in SCA7. Together, our data indicate that ATXN7 plays an essential role in vertebrate eye morphogenesis and photoreceptor differentiation, and its loss of function may contribute to the development of human coloboma.