Trough levels of the post-induction serum infliximab (IFX) are associated with short-term and long-term responses of Crohn’s disease patients to IFX, but the inter-individual differences are large. We aimed to elucidate whether single gene polymorphisms (SNPs) within FCGR3A, ATG16L1, C1orf106, OSM, OSMR, NF-κB1, IL1RN, and IL10 partially account for these differences and employed a multivariate regression model to predict patients’ post-induction IFX levels.


The retrospective study included 189 Crohn’s disease patients undergoing IFX therapy. Post-induction IFX levels were measured and 41 tag SNPs within eight genes were genotyped. Associations between SNPs and IFX levels were analysed. Then, a multivariate logistic-regression model was developed to predict whether the patients’ IFX levels achieved the threshold of therapy (3 μg/mL).


Six SNPs (rs7587051, rs143063741, rs442905, rs59457695, rs3213448, and rs3021094) were significantly associated with the post-induction IFX trough level (P =0.015, P <0.001, P =0.046, P =0.022, P =0.011, P =0.013, respectively). A multivariate prediction model of the IFX level was established by baseline albumin (P =0.002), rs442905 (P =0.025), rs59457695 (P =0.049), rs3213448 (P =0.056), and rs3021094 (P =0.047). The area under the receiver operating characteristic curve (AUROC) of this prediction model in a representative training dataset was 0.758. This result was verified in a representative testing dataset, with an AUROC of 0.733.


Polymorphisms in C1orf106, IL1RN, and IL10 play an important role in the variability of IFX post-induction levels, as indicated in this multivariate prediction model of IFX levels with fair performance.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.