Previously, we have detected the expression of 2 lipocalin genes (lp1 and lp2) in the olfactory epithelium of the Japanese newt Cynops pyrrhogaster. Recombinant proteins of these genes (Cp-Lip1 and Cp-Lip2, respectively) exhibited high affinities to various odorants, suggesting that they work like the odorant-binding proteins (OBPs). However, the physiological functions of OBP generally remain inconclusive. Here, we examined the effect of Cp-Lip1 on the electrophysiological responses of newt olfactory receptor cells. We observed that the electro-olfactogram induced by the vapor of an odorant with high affinity to Cp-Lip1 appeared to increase in amplitude when a tiny drop of Cp-Lip1 solution was dispersed over the olfactory epithelium. However, the analysis was difficult because of possible interference by intrinsic components in the nasal mucus. We subsequently adopted a mucus-free condition by using suction electrode recordings from isolated olfactory cells, in which impulses were generated by puffs of odorant solution. When various concentration (0–5 µM) of Cp-Lip1 was mixed with the stimulus solution of odorants highly affinitive to Cp-Lip1, the impulse frequency increased in a concentration-dependent manner. The increase by Cp-Lip1 was seen more evidently at lower concentration ranges of stimulus odorants. These results strongly suggest that Cp-Lip1 broadens the sensitivity of the olfactory cells toward the lower concentration of odorants, by which animals can detect very low concentration of odorants.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)