Glucose, fructose, and sucrose are important carbohydrates in Western diets with particular sweetness intensity and metabolisms. No study has compared their cerebral detection and their taste perception. Gustatory evoked potentials (GEPs), taste detection thresholds, intensity perception, and pleasantness were compared in response to glucose, fructose, and sucrose solutions at similar sweetness intensities and at identical molar concentrations. Twenty-three healthy subjects were randomly stimulated with 3 solutions of similar sweetness intensity (0.75 M of glucose, 0.47 M of fructose and 0.29 M of sucrose – sit. A), and with an identical molar concentration (0.29 M – sit. B). GEPs were recorded at gustatory cortex areas. Intensity perception and hedonic values of each solution were evaluated as were gustatory thresholds of the solutions. No significant difference was observed concerning the GEP characteristics of the solutions according to their sweetness intensities (sit. A) or their molar concentration (sit. B). In sit. A, the 3 solutions were perceived to have similar intensities and induced similar hedonic sensations. In sit. B, the glucose solution was perceived to be less intense and pleasant than the fructose and the sucrose solutions (P < 0.001) and the fructose solution was perceived to be less intense and pleasant than the sucrose (P < 0.001). Since GEP recordings were similar for glucose, fructose, and sucrose solutions whatever the concentrations, activation of same taste receptor induces similar cortical activation, even when the solutions were perceived differently. Sweet taste perception seems to be encoded by a complex chemical cerebral neuronal network.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)