Perceptual learning is an enhancement in discriminability of similar stimuli following experience with those stimuli. Here, we examined the efficacy of adding additional active training following a standard training session, compared with additional stimulus exposure in the absence of associated task performance. Mice were trained daily in an odor-discrimination task, and then, several hours later each day, received 1 of 3 different manipulations: 1) a second active-training session, 2) non-task-related odor exposure in the home cage, or 3) no second session. For home-cage exposure, odorants were presented in small tubes that mice could sniff and investigate for a similar period of time as in the active discrimination task each day. The results demonstrate that daily home-cage exposure was equivalent to active odor training in supporting improved odor discrimination. Daily home-cage exposure to odorants that did not match those used in the active task did not improve learning, yielding outcomes similar to those obtained with no second session. Piriform cortical local field potential recordings revealed that both sampling in the active learning task and investigation in the home cage evoked similar beta band oscillatory activity. Together the results suggest that odor-discrimination learning can be significantly enhanced by addition of odor exposure outside of the active training task, potentially because of the robust activity evoked in the olfactory system by both exposure paradigms. They further suggest that odorant exposure alone could enhance or maintain odor-discrimination abilities in conditions associated with olfactory impairment, such as aging or dementia.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (