Most familiar odors are complex mixtures of volatile molecules, which the olfactory system automatically synthesizes into a perceptual whole. However, odors are rarely encountered in isolation; thus, the brain must also separate distinct odor objects from complex and variable backgrounds. In vision, autistic traits are associated with superior performance in tasks that require focus on the local features of a perceptual scene. The aim of the present study was to determine whether the same advantage was observed in the analysis of olfactory scenes. To do this, we compared the ability of 1) 40 young adults (aged 16–35) with high (n = 20) and low levels of autistic traits and 2) 20 children (aged 7–11), with (n = 10) and without an autism spectrum disorder diagnosis, to identify individual odor objects presented within odor mixtures. First, we used a 4-alternative forced choice task to confirm that both adults and children were able to reliably identify 8 blended fragrances, representing food-related odors, when presented individually. We then used the same forced choice format to test participants’ ability to identify the odors when they were combined in either binary or ternary mixtures. Adults with high levels of autistic traits showed superior performance on binary but not ternary mixture trials, whereas children with an autism spectrum disorder diagnosis outperformed age-matched neurotypical peers, irrespective of mixture complexity. These findings indicate that the local processing advantages associated with high levels of autistic traits in visual tasks are also apparent in a task requiring analytical processing of odor mixtures.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (