Among the 5 taste qualities, salt is the least understood. The receptors, their expression pattern in taste cells, and the transduction mechanisms for salt taste are still unclear. Previous studies have suggested that low concentrations of NaCl are detected by the amiloride-sensitive epithelial Na+ channel (ENaC), which in other systems requires assembly of 3 homologous subunits (α, β, and γ) to form a functional channel. However, a new study from Lossow and colleagues, published in this issue of Chemical Senses, challenges that hypothesis by examining expression levels of the 3 ENaC subunits in individual taste cells using gene-targeted mice in combination with immunohistochemistry and in situ hybridization. Results show a lack of colocalization of ENaC subunits in taste cells as well as expression of subunits in taste cells that show no amiloride sensitivity. These new results question the molecular identity of the amiloride-sensitive Na+ conductance in taste cells.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)