With increasing availability of smartphones with Global Positioning System (GPS) capabilities, large-scale studies relating individual-level mobility patterns to a wide variety of patient-centered outcomes, from mood disorders to surgical recovery, are becoming a reality. Similar past studies have been small in scale and have provided wearable GPS devices to subjects. These devices typically collect mobility traces continuously without significant gaps in the data, and consequently the problem of data missingness has been safely ignored. Leveraging subjects’ own smartphones makes it possible to scale up and extend the duration of these types of studies, but at the same time introduces a substantial challenge: to preserve a smartphone’s battery, GPS can be active only for a small portion of the time, frequently less than |$10\%$|⁠, leading to a tremendous missing data problem. We introduce a principled statistical approach, based on weighted resampling of the observed data, to impute the missing mobility traces, which we then summarize using different mobility measures. We compare the strengths of our approach to linear interpolation (LI), a popular approach for dealing with missing data, both analytically and through simulation of missingness for empirical data. We conclude that our imputation approach better mirrors human mobility both theoretically and over a sample of GPS mobility traces from 182 individuals in the Geolife data set, where, relative to LI, imputation resulted in a 10-fold reduction in the error averaged across all mobility features.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)