Multistate cure models are multistate models in which transitions into one or more of the states cannot occur for a fraction of the population. In the study of cancer, multistate cure models can be used to identify factors related to the rate of cancer recurrence, the rate of death before and after recurrence, and the probability of being cured by initial treatment. However, the previous method for fitting multistate cure models requires substantial custom programming, making these valuable models less accessible to analysts. In this article, we present an Expectation–Maximization (EM) algorithm for fitting the multistate cure model using maximum likelihood. The proposed algorithm makes use of a weighted likelihood representation allowing it to be easily implemented with standard software and can incorporate either parametric or non-parametric baseline hazards for the state transition rates. A common complicating feature in cancer studies is that the follow-up times for recurrence and death may differ. Additionally, we may have missingness in the covariates. We propose a Monte Carlo EM (MCEM) algorithm for fitting the multistate cure model in the presence of covariate missingness and/or unequal follow-up of the two outcomes, we describe a novel approach for obtaining standard errors, and we provide some software. Simulations demonstrate good algorithmic performance as long as the modeling assumptions are sufficiently restrictive. We apply the proposed algorithm to a study of recurrence and death in patients with head and neck cancer.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (