An intermediate response measure that accurately predicts efficacy in a new setting at the individual level could be used both for prediction and personalized medical decisions. In this article, we define a predictive individual-level general surrogate (PIGS), which is an individual-level intermediate response that can be used to accurately predict individual efficacy in a new setting. While methods for evaluating trial-level general surrogates, which are predictors of trial-level efficacy, have been developed previously, few, if any, methods have been developed to evaluate individual-level general surrogates, and no methods have formalized the use of cross-validation to quantify the expected prediction error. Our proposed method uses existing methods of individual-level surrogate evaluation within a given clinical trial setting in combination with cross-validation over a set of clinical trials to evaluate surrogate quality and to estimate the absolute prediction error that is expected in a new trial setting when using a PIGS. Simulations show that our method performs well across a variety of scenarios. We use our method to evaluate and to compare candidate individual-level general surrogates over a set of multi-national trials of a pentavalent rotavirus vaccine.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)