A dynamic treatment regimen (DTR) is a sequence of decision rules that can alter treatments or doses based on outcomes from prior treatment. In the case of two lines of treatment, a DTR specifies first-line treatment, and second-line treatment for responders and treatment for non-responders to the first-line treatment. A sequential, multiple assignment, randomized trial (SMART) is one such type of trial that has been designed to assess DTRs. The primary goal of our project is to identify the treatments, covariates, and their interactions result in the best overall survival rate. Many previously proposed methods to analyze data with survival outcomes from a SMART use inverse probability weighting and provide non-parametric estimation of survival rates, but no other information. Other methods have been proposed to identify and estimate the optimal DTR, but inference issues were seldom addressed. We apply a joint modeling approach to provide unbiased survival estimates as a mechanism to quantify baseline and time-varying covariate effects, treatment effects, and their interactions within regimens. The issue of multiple comparisons at specific time points is addressed using multiple comparisons with the best method.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)