Summary

Thanks to recent advances in live cell imaging of biosensors, microscopy experiments can generate thousands of single-cell time-series. To identify sub-populations with distinct temporal behaviours that correspond to different cell fates, we developed Time Course Inspector (TCI)—a unique tool written in R/Shiny to combine time-series analysis with clustering. With TCI it is convenient to inspect time-series, plot different data views and remove outliers. TCI facilitates interactive exploration of various hierarchical clustering and cluster validation methods. We showcase TCI by analysing a single-cell signalling time-series dataset acquired using a fluorescent biosensor.

Availability and implementation

https://github.com/pertzlab/shiny-timecourse-inspector.

Supplementary information

Supplementary data are available at Bioinformatics online.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)