Motivation

The development of proteomic methods for the characterization of domain/motif interactions has greatly expanded our understanding of signal transduction. However, proteomics-based binding screens have limitations including that the queried tissue or cell type may not harbor all potential interacting partners or post-translational modifications (PTMs) required for the interaction. Therefore, we sought a generalizable, complementary in silico approach to identify potentially novel motif and PTM-dependent binding partners of high priority.

Results

We used as an initial example the interaction between the Src homology 2 (SH2) domains of the adaptor proteins CT10 regulator of kinase (CRK) and CRK-like (CRKL) and phosphorylated-YXXP motifs. Employing well-curated, publicly-available resources, we scored and prioritized potential CRK/CRKL–SH2 interactors possessing signature characteristics of known interacting partners. Our approach gave high priority scores to 102 of the >9000 YXXP motif-containing proteins. Within this 102 were 21 of the 25 curated CRK/CRKL–SH2-binding partners showing a more than 80-fold enrichment. Several predicted interactors were validated biochemically. To demonstrate generalized applicability, we used our workflow to predict protein–protein interactions dependent upon motif-specific arginine methylation. Our data demonstrate the applicability of our approach to, conceivably, any modular binding domain that recognizes a specific post-translationally modified motif.

Supplementary information

Supplementary data are available at Bioinformatics online.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)