Motivation

Evolutionary information is crucial for the annotation of proteins in bioinformatics. The amount of retrieved homologs often correlates with the quality of predicted protein annotations related to structure or function. With a growing amount of sequences available, fast and reliable methods for homology detection are essential, as they have a direct impact on predicted protein annotations.

Results

We developed a discriminative, alignment-free algorithm for homology detection with quasi-linear complexity, enabling theoretically much faster homology searches. To reach this goal, we convert the protein sequence into numeric biophysical representations. These are shrunk to a fixed length using a novel vector quantization method which uses a Discrete Cosine Transform compression. We then compute, for each compressed representation, similarity scores between proteins with the Dynamic Time Warping algorithm and we feed them into a Random Forest. The WARP performances are comparable with state of the art methods.

Availability and implementation

The method is available at http://ibsquare.be/warp.

Supplementary information

Supplementary data are available at Bioinformatics online.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)