Motivation

ADP-ribosylation is a post-translational modification (PTM) implicated in several crucial cellular processes, ranging from regulation of DNA repair and chromatin structure to cell metabolism and stress responses. To date, a complete understanding of ADP-ribosylation targets and their modification sites in different tissues and disease states is still lacking. Identification of ADP-ribosylation sites is required to discern the molecular mechanisms regulated by this modification. This motivated us to develop a computational tool for the prediction of ADP-ribosylated sites.

Results

Here, we present ADPredict, the first dedicated computational tool for the prediction of ADP-ribosylated aspartic and glutamic acids. This predictive algorithm is based on (i) physicochemical properties, (ii) in-house designed secondary structure-related descriptors and (iii) three-dimensional features of a set of human ADP-ribosylated proteins that have been reported in the literature. ADPredict was developed using principal component analysis and machine learning techniques; its performance was evaluated both internally via intensive bootstrapping and in predicting two external experimental datasets. It outperformed the only other available ADP-ribosylation prediction tool, ModPred. Moreover, a novel secondary structure descriptor, HM-ratio, was introduced and successfully contributed to the model development, thus representing a promising tool for bioinformatics studies, such as PTM prediction.

Availability and implementation

ADPredict is freely available at www.ADPredict.net.

Supplementary information

Supplementary data are available at Bioinformatics online.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.