Motivation

Large-scale computational docking will be increasingly used in future years to discriminate protein–protein interactions at the residue resolution. Complete cross-docking experiments make in silico reconstruction of protein–protein interaction networks a feasible goal. They ask for efficient and accurate screening of the millions structural conformations issued by the calculations.

Results

We propose CIPS (Combined Interface Propensity for decoy Scoring), a new pair potential combining interface composition with residue–residue contact preference. CIPS outperforms several other methods on screening docking solutions obtained either with all-atom or with coarse-grain rigid docking. Further testing on 28 CAPRI targets corroborates CIPS predictive power over existing methods. By combining CIPS with atomic potentials, discrimination of correct conformations in all-atom structures reaches optimal accuracy. The drastic reduction of candidate solutions produced by thousands of proteins docked against each other makes large-scale docking accessible to analysis.

Availability and implementation

CIPS source code is freely available at http://www.lcqb.upmc.fr/CIPS.

Supplementary information

Supplementary data are available at Bioinformatics online.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]