Summary

Rapid RNA synthesis of comprehensive single mutant libraries and targeted multiple mutant libraries is enabling new multidimensional chemical approaches to solve RNA structures. PCR assembly of DNA templates and in vitro transcription allow synthesis and purification of hundreds of RNA mutants in a cost-effective manner, with sharing of primers across constructs allowing significant reductions in expense. However, these protocols require organization of primer locations across numerous 96 well plates and guidance for pipetting, non-trivial tasks for which informatics and visualization tools can prevent costly errors. We report here an online tool to accelerate synthesis of large libraries of desired mutants through design and efficient organization of primers. The underlying program and graphical interface have been experimentally tested in our laboratory for RNA domains with lengths up to 300 nucleotides and libraries encompassing up to 960 variants. In addition to the freely available Primerize-2D server, the primer design code is available as a stand-alone Python package for broader applications.

Availability and Implementation

http://primerize2d.stanford.edu

Supplementary information

Supplementary data are available at Bioinformatics online.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)