Cell–cell interactions (CCIs) play critical roles in many biological processes such as cellular differentiation, tissue homeostasis, and immune response. With the rapid development of high throughput single-cell RNA sequencing (scRNA-seq) technologies, it is of high importance to identify CCIs from the ever-increasing scRNA-seq data. However, limited by the algorithmic constraints, current computational methods based on statistical strategies ignore some key latent information contained in scRNA-seq data with high sparsity and heterogeneity.


Here, we developed a deep learning framework named DeepCCI to identify meaningful CCIs from scRNA-seq data. Applications of DeepCCI to a wide range of publicly available datasets from diverse technologies and platforms demonstrate its ability to predict significant CCIs accurately and effectively. Powered by the flexible and easy-to-use software, DeepCCI can provide the one-stop solution to discover meaningful intercellular interactions and build CCI networks from scRNA-seq data.

Availability and implementation

The source code of DeepCCI is available online at

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.