Evaluating the gene completeness is critical to measuring the quality of a genome assembly. An incomplete assembly can lead to errors in gene predictions, annotation, and other downstream analyses. Benchmarking Universal Single-Copy Orthologs (BUSCO) is a widely used tool for assessing the completeness of genome assembly by testing the presence of a set of single-copy orthologs conserved across a wide range of taxa. However, BUSCO is slow particularly for large genome assemblies. It is cumbersome to apply BUSCO to a large number of assemblies.


Here, we present compleasm, an efficient tool for assessing the completeness of genome assemblies. Compleasm utilizes the miniprot protein-to-genome aligner and the conserved orthologous genes from BUSCO. It is 14 times faster than BUSCO for human assemblies and reports a more accurate completeness of 99.6% than BUSCO’s 95.7%, which is in close agreement with the annotation completeness of 99.5% for T2T-CHM13.

Availability and implementation

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.