Motivation

Learning low-dimensional representations of single-cell transcriptomics has become instrumental to its downstream analysis. The state of the art is currently represented by neural network models, such as variational autoencoders, which use a variational approximation of the likelihood for inference.

Results

We here present the Deep Generative Decoder (DGD), a simple generative model that computes model parameters and representations directly via maximum a posteriori estimation. The DGD handles complex parameterized latent distributions naturally unlike variational autoencoders, which typically use a fixed Gaussian distribution, because of the complexity of adding other types. We first show its general functionality on a commonly used benchmark set, Fashion-MNIST. Secondly, we apply the model to multiple single-cell datasets. Here, the DGD learns low-dimensional, meaningful, and well-structured latent representations with sub-clustering beyond the provided labels. The advantages of this approach are its simplicity and its capability to provide representations of much smaller dimensionality than a comparable variational autoencoder.

Availability and implementation

scDGD is available as a python package at https://github.com/Center-for-Health-Data-Science/scDGD. The remaining code is made available here: https://github.com/Center-for-Health-Data-Science/dgd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.