Motivation

Sequencing coverage is among key determinants considered in the design of omics studies. To help estimate cost-effective sequencing coverage for specific downstream analysis, downsampling, a technique to sample subsets of reads with a specific size, is routinely used. However, as the size of sequencing becomes larger and larger, downsampling becomes computationally challenging.

Results

Here, we developed an approximate downsampling method called s-leaping that was designed to efficiently and accurately process large-size data. We compared the performance of s-leaping with state-of-the-art downsampling methods in a range of practical omics-study downsampling settings and found s-leaping to be up to 39% faster than the second-fastest method, with comparable accuracy to the exact downsampling methods. To apply s-leaping on FASTQ data, we developed a light-weight tool called fadso in C. Using whole-genome sequencing data with 208 million reads, we compared fadso’s performance with that of a commonly used FASTQ tool with the same downsampling feature and found fadso to be up to 12% faster with 21% lower memory usage, suggesting fadso to have up to 40% higher throughput in a parallel computing setting.

Availability and implementation

The C source code for s-leaping, as well as the fadso package is freely available at https://github.com/hkuwahara/sleaping.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.