Motivation

The state-of-art protein structure prediction methods such as AlphaFold are being widely used to predict structures of uncharacterized proteins in biomedical research. There is a significant need to further improve the quality and nativeness of the predicted structures to enhance their usability. In this work, we develop ATOMRefine, a deep learning-based, end-to-end, all-atom protein structural model refinement method. It uses a SE(3)-equivariant graph transformer network to directly refine protein atomic coordinates in a predicted tertiary structure represented as a molecular graph.

Results

The method is first trained and tested on the structural models in AlphaFoldDB whose experimental structures are known, and then blindly tested on 69 CASP14 regular targets and 7 CASP14 refinement targets. ATOMRefine improves the quality of both backbone atoms and all-atom conformation of the initial structural models generated by AlphaFold. It also performs better than two state-of-the-art refinement methods in multiple evaluation metrics including an all-atom model quality score—the MolProbity score based on the analysis of all-atom contacts, bond length, atom clashes, torsion angles, and side-chain rotamers. As ATOMRefine can refine a protein structure quickly, it provides a viable, fast solution for improving protein geometry and fixing structural errors of predicted structures through direct coordinate refinement.

Availability and implementation

The source code of ATOMRefine is available in the GitHub repository (https://github.com/BioinfoMachineLearning/ATOMRefine). All the required data for training and testing are available at https://doi.org/10.5281/zenodo.6944368.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.