Genome-wide association studies (GWASs) have identified numerous genetic variants associated with complex disease risk; however, most of these associations are non-coding, complicating identifying their proximal target gene. Transcriptome-wide association studies (TWASs) have been proposed to mitigate this gap by integrating expression quantitative trait loci (eQTL) data with GWAS data. Numerous methodological advancements have been made for TWAS, yet each approach requires ad hoc simulations to demonstrate feasibility. Here, we present twas_sim, a computationally scalable and easily extendable tool for simplified performance evaluation and power analysis for TWAS methods.

Availability and implementation

Software and documentation are available at

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.