Many high-throughput screening studies have been carried out in cancer cell lines to identify therapeutic agents and targets. Existing consistency assessment studies only examined two datasets at a time, with conclusions based on a subset of carefully selected features rather than considering global consistency of all the data. However, poor concordance can still be observed for a large part of the data even when selected features are highly consistent.


In this study, we assembled nine compound screening datasets and three functional genomics datasets. We derived direct measures of consistency as well as indirect measures of consistency based on association between functional data and copy number-adjusted gene expression data. These results have been integrated into a web application—the Functional Data Consistency Explorer (FDCE), to allow users to make queries and generate interactive visualizations so that functional data consistency can be assessed for individual features of interest.

Availability and implementation

The FDCE web tool and we have developed and the functional data consistency measures we have generated are available at

Supplementary information

Supplementary data are available at Bioinformatics online.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]