Motivation

The discovery of biologically interpretable and clinically actionable communities in heterogeneous omics data is a necessary first step toward deriving mechanistic insights into complex biological phenomena. Here, we present a novel clustering approach, omeClust, for community detection in omics profiles by simultaneously incorporating similarities among measurements and the overall complex structure of the data.

Results

We show that omeClust outperforms published methods in inferring the true community structure as measured by both sensitivity and misclassification rate on simulated datasets. We further validated omeClust in diverse, multiple omics datasets, revealing new communities and functionally related groups in microbial strains, cell line gene expression patterns and fetal genomic variation. We also derived enrichment scores attributable to putatively meaningful biological factors in these datasets that can serve as hypothesis generators facilitating new sets of testable hypotheses.

Availability and implementation

omeClust is open-source software, and the implementation is available online at http://github.com/omicsEye/omeClust.

Supplementary information

Supplementary data are available at Bioinformatics online.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.