Accumulating evidence has highlighted the importance of microbial interaction networks. Methods have been developed for estimating microbial interaction networks, of which the generalized Lotka–Volterra equation (gLVE)-based method can estimate a directed interaction network. The previous gLVE-based method for estimating microbial interaction networks did not consider time-varying interactions.


In this study, we developed unsupervised learning-based microbial interaction inference method using Bayesian estimation (Umibato), a method for estimating time-varying microbial interactions. The Umibato algorithm comprises Gaussian process regression (GPR) and a new Bayesian probabilistic model, the continuous-time regression hidden Markov model (CTRHMM). Growth rates are estimated by GPR, and interaction networks are estimated by CTRHMM. CTRHMM can estimate time-varying interaction networks using interaction states, which are defined as hidden variables. Umibato outperformed the existing methods on synthetic datasets. In addition, it yielded reasonable estimations in experiments on a mouse gut microbiota dataset, thus providing novel insights into the relationship between consumed diets and the gut microbiota.

Availability and implementation

The C++ and python source codes of the Umibato software are available at

Supplementary information

Supplementary data are available at Bioinformatics online.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.