Cox-nnet is a neural-network-based prognosis prediction method, originally applied to genomics data. Here, we propose the version 2 of Cox-nnet, with significant improvement on efficiency and interpretability, making it suitable to predict prognosis based on large-scale population data, including those electronic medical records (EMR) datasets. We also add permutation-based feature importance scores and the direction of feature coefficients. When applied on a kidney transplantation dataset, Cox-nnet v2.0 reduces the training time of Cox-nnet up to 32-folds (n =10 000) and achieves better prediction accuracy than Cox-PH (P<0.05). It also achieves similarly superior performance on a publicly available SUPPORT data (n=8000). The high efficiency and accuracy make Cox-nnet v2.0 a desirable method for survival prediction in large-scale EMR data.

Availability and implementation

Cox-nnet v2.0 is freely available to the public at

Supplementary information

Supplementary data are available at Bioinformatics online.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (