For some specific tissues, such as the heart and brain, normal controls are difficult to obtain. Thus, studies with only a particular type of disease samples (one phenotype) cannot be analyzed using common methods, such as significance analysis of microarrays, edgeR and limma. The RankComp algorithm, which was mainly developed to identify individual-level differentially expressed genes (DEGs), can be applied to identify population-level DEGs for the one-phenotype data but cannot identify the dysregulation directions of DEGs.


Here, we optimized the RankComp algorithm, termed PhenoComp. Compared with RankComp, PhenoComp provided the dysregulation directions of DEGs and had more robust detection power in both simulated and real one-phenotype data. Moreover, using the DEGs detected by common methods as the ‘gold standard’, the results showed that the DEGs detected by PhenoComp using only one-phenotype data were comparable to those identified by common methods using case-control samples, independent of the measurement platform. PhenoComp also exhibited good performance for weakly differential expression signal data.

Availability and implementation

The PhenoComp algorithm is available on the web at

Supplementary information

Supplementary data are available at Bioinformatics online.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]