Abstract
The frequency and type of dyadic social interactions individuals partake in has important fitness consequences. Social network analysis is an effective tool to quantify the complexity and consequences of these behaviors on the individual level. Less work has used social networks to quantify the social structure—specific attributes of the pattern of all social interactions in a network—of animal social groups, and its fitness consequences for those individuals who comprise the group. We studied the association between social structure, quantified via five network measures, and annual reproductive success in wild, free-living female yellow-bellied marmots (Marmota flaviventer). We quantified reproductive success in two ways: (1) if an individual successfully weaned a litter and (2) how many pups were weaned. Networks were constructed from 38 968 interactions between 726 unique individuals in 137 social groups across 19 years. Using generalized linear mixed models, we found largely no relationship between either measure of reproductive success and social structure. We found a modest relationship that females residing in more fragmentable social groups (i.e., groups breakable into two or more separate groups of two or more individuals) weaned larger litters. Prior work showed that yellow-bellied marmots residing in more fragmentable groups gained body mass faster—another important fitness correlate. Interestingly, we found no strong relationships between other attributes of social group structure, suggesting that in this facultatively social mammal, the position of individuals within their group, the individual social phenotype, may be more important for fitness than the emergent group social phenotype.
Lay Summary
How individuals interact with other members of their own species often has fitness consequences. Such interactions also structure social groups, which may in turn affect the individuals who reside in the group. Using social network analysis to quantify social group structure, we show that female yellow-bellied marmots living in more fragmentable social groups (breakable into two or more separate groups of two or more individuals) weaned larger litters.