New species can arise when female preferences and male sexual signals diverge across populations and thereby reduce mating between populations. Under this hypothesized mechanism for speciation, mate preferences and sexual signals should be correlated, but divergent, across populations. We evaluated this prediction using spadefoot toads (Spea multiplicata). We measured a sexually selected male signal (call rate) for which female preferences are known to vary across populations in response to the risk of hybridizing with another species. Contrary to expectation, we found no correlation between male call rate and female preferences across populations. We discuss possible mechanisms of this pattern, including the effect of gene flow from heterospecifics on male call rate. Our results suggest that, even when populations vary in mating traits, the independent evolution of female preferences and male sexual signals might impede reproductive isolation between populations.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)