Abstract
Triadic awareness, or knowledge of the relationships between others, is essential to navigating many complex social interactions. While some animals maintain relationships with former group members post-dispersal, recognizing cross-group relationships between others may be more cognitively challenging than simply recognizing relationships between members of a single group because there is typically much less opportunity to observe interactions between individuals that do not live together. We presented acorn woodpeckers (Melanerpes formicivorus), a highly social species, with playback stimuli consisting of a simulated chorus between two different individuals, a behavior that only occurs naturally between social affiliates. Subjects were expected to respond less rapidly if they perceived the callers as having an affiliative relationship. Females responded more rapidly to a pair of callers that never co-occurred in the same social group, and responded less rapidly to callers that were members of the same social group at the time of the experiment and to callers that last lived in the same group before the subject had hatched. This suggests that female acorn woodpeckers can infer the existence of relationships between conspecifics that live in separate groups by observing them interact after the conspecifics in question no longer live in the same group as each other. This study provides experimental evidence that nonhuman animals may recognize relationships between third parties that no longer live together and emphasizes the potential importance of social knowledge about distant social affiliates.